Magnetic Czochralski silicon as detector material

J. Härkönen, E. Tuovinen, P. Luukka, H.K. Nordlund and E. Tuominen

Helsinki Institute of Physics
Gustaf Hallstrominkatu 2
00014 University of Helsinki
Finland

Jaakko.haerkonen@cern.ch

Jaakko Härkönen, 6th "Hiroshima" Symposium, Carmel, California, September 12 2006
Outline

- Motivation to use Czochralski silicon (Cz-Si).
- Why not before?
- Crystal growth.
- Processing issues.
- Thermal Donors (TD) in Cz-Si
- P-type magnetic Cz-Si
- Radiation Hardness
- Summary

Esa Tuovinen loading MCz-Si wafers into oxidation furnace at the Microelectronics Center of Helsinki University of Technology, Finland.
Why Cz-Si?

- Cz-Si available in larger diameters
- Lower wafer cost
- Better compatibility with advanced CMOS processes
- Oxygen brings significant improvement in thermal slip resistance
- Oxygen gives significant radiation hardness advantage.

Why not before?

* No demand for high resistivity Cz-Si -> No availability
* Price for custom specified ingot 15,000 € - 20,000 €
* Now RF-IC industry shows interest on high resistivity Cz-Si
 (=lower substrate losses of RF-signal)
Crystal growth

Growth parameters

- Gas flow
- Pressure
- Purge tubes (gas flow pattern)
- Crucible rotation
- Crystal rotation
- Temperature distribution
- Magnetic field

Requirements for detector applications

- High resistivity
- Oxygen concentration $5-10 \times 10^{17}$ cm$^{-3}$
- Homogeneity
- High minority carrier lifetime

![Graph showing resistivity and distance from seed]

- Oxygen donor compensation
- Boron/Aluminum contamination
Oxygen concentration in MCz-Si

- O concentration from FTIR measurements
- Thick reference wafer

- Center 4.95×10^{17} cm$^{-3}$
- Right 4.89×10^{17} cm$^{-3}$
- Left 4.93×10^{17} cm$^{-3}$
- Right 4.93×10^{17} cm$^{-3}$
The devices were processed at Helsinki University of Technology Microelectronics Center

- with simple 5-8 level mask process:
 - 4 lithographies
 - 2-3 ion implantations
 - 2 thermal dry oxidations
 - 3 sputter metal depositions

AC-pad, bonded to read out
DC-pad, for testing
Bias resistors
Bias line
Guard Ring for isolation
multi GR
Processing of Cz-Si Detectors

• Basically no difference from standard Fz-Si detector process, except...

• High O content leads to Thermal Donor (TD) formation at temperatures 400°C - 600°C.

• TD formation can be enhanced if H is present.

• Typical process steps at 400°C - 600°C
 - Aluminum sintering
 (e.g. 30min @ 450°C)
 - Passivation insulators over metals
 (LTO, TEOS etc ~600°C
 + H₂ from Si₃H₄ process gas)
Thermal Donors in Cz-Si

• TDs are oxygen complexes that form shallow states in Si band gap below the conduction band.

• High O content leads to Thermal Donor (TD) formation temperatures 400°C – 600°C.

• TD formation can be enhanced if H is present.

• Effective resistivity can be adjusted in p-type MCz-Si $500 \ \Omega \text{cm} < \sigma < \sim 10 \ \text{k}\Omega\text{cm}$

• With this method it is possible to engineer the V_{fd} of p-type MCz-Si n+/p-/p+ detectors

Thermal Donor generation (experimental results)

- One data point is average of 10 diodes over the wafer diameter
- Error bars represent standard deviation

Jaakko Härkönen, 6th "Hiroshima" Symposium, Carmel, California, September 12 2006
Fitting of the Model II

\[\chi = 1.893 \]
\[c = 6.824 \times 10^{-20} \]
\[b = 6.60789 \times 10^{-6} \]

\[N_{TD}(t, T) = a \times O_i^{1.893} \left(1 - e^{-bD_iO_i t} \right) + N_{TD}(0) \]
Homogeneity

Full Depletion Voltage with respect of distance from wafer center

Jaakko Härkönen, 6th "Hiroshima" Symposium, Carmel, California, September 12 2006
Homogeneity

Leakage current with respect of distance from wafer center

PO68 is $n^+/p^-/p^+$ device with
p-stop implant ($1\times10^{15}\text{cm}^{-2}$) and
p-spray $1\times10^{15}\text{cm}^{-2}$
Radiation hardness of MCz-Si

Proton radiation: Less prone for V_{fd} increase than std Fz-Si or Diffusion oxygenated Fz-Si
Neutron radiation: No significant difference

Gamma radiation: Increase of positive space charge. Beneficial for Linear Collider applications?
Summary

• MCz-Si is commercially available in large quantities with resistivity 1000Ω cm (n-type) and 2 kΩ cm (p-type).

• MCz-Si shows better radiation hardeness againsta protons than Fz-Si materials. No improvment against neutron and no difference in leakage current.

• Thermal Donors can be introduced into MCz-Si detectors at 430°C during the aluminum sintering, i.e. b low cost process, no additional process complexity.

• Leakage current and V_{fd} in p-type MCz-Si $n+/p-/p+$ and $p^+/n^-/n^+$ detectors is homogenous over the wafer diameter.